
Certificates for Tree Automata Completion ⋆

Roberto Zunino

Dipartimento di Informatica e Telecomunicazioni, Università di Trento, Italy
Dipartimento di Informatica, Università di Pisa, Italy

zunino@disi.unitn.it

Abstract. We consider the problem of certifying the correctness of a
protocol or security API through a formal, machine-checkable proof. To
this aim, we re-examine the completion algorithm for tree automata and
term rewriting systems, that computes an over-approximation of regular
sets of terms up to rewriting. We then define a procedure to certify,
via a proof, that the result of the completion is indeed correct. Hence,
with our procedure, a program verification tool that uses the completion
algorithm can certify its results. As a consequence, we do not need to
regard the tool as a trusted component of the verification process. We
discuss on our experiments in which we automatically generated security
proofs for some selected protocols.

1 Introduction

Static analyses based on tree automata [3] and their completion [6,12,16] have
been proposed [2,17] and used in tools [1,11,13] for many purposes, notably cryp-
tographic protocol verification [14,7]. These static verification tools are indeed
useful, providing a very high level of confidence on the correctness of the system
at hand. However, in this approach to system verification, the correctness of the
verification tool itself is crucial. When one of these tools claim “the system is
correct”, one should actually add the premise “as long as the used tool is correct”.
A more cautious approach would then be regarding these tools as reducing the
correctness problem of the system to that of the tool. While it is quite common
to include the verification tool in the trusted computing base, this might not be
advisable, especially when the tool is quite a complex system.

Using a small trusted base would greatly improve the confidence on the tool
results. In this work, we present a way to remove our Rewrite tool [11] from the
trusted base, by reducing its correctness to that of the Coq proof assistant [4].
We stress that our technique is general: we can certify any reachability result
produced by Rewrite. We also see no major obstacles in adapting our technique
to other tools based on the completion algorithm as well.

We considered proving Rewrite correct using Coq. Many obstacles hinder this
path. First, Rewrite consists of roughly 5000 lines of Haskell source code, that

⋆ Partially supported by the EU within the FETPI Global Computing, project IST-
2005-16004 SENSORIA.

must be proved correct. Second, defining in Coq the semantics of Haskell is a
daunting task on its own. Third, one must either assume the correctness of all
the software Rewrite depends on, or prove it correct. The latter seems to be
practically unfeasible: it involves proving the correctness of the Haskell libraries,
the Haskell compiler, the C system libraries, the operating system kernel, etc.

We instead chose a simpler alternative: rather than proving Rewrite correct,
we modified Rewrite to provide a Coq correctness proof of its own outputs. That
is, when Rewrite statically establishes a property on its input, it states “the
system is correct” and it provides a Coq proof for it. In other words, Rewrite

certifies its own claims. Note that this does not rule out the presence of bugs in
Rewrite or the other software mentioned above. However, when the certificate is
validated by Coq, the single component we trust, then the property holds, and
the way we generated the certificate is then irrelevant.

Our approach is clearly related to proof carrying code [10]: our proofs on
tree automata can be seen as proofs on approximations of programs. In this
scenario the completion tool plays the rôle of the program compiler, which can
be instrumented so that it generates proofs for the program being compiled.

Related techniques can be found in the H1 tool [9] of Goubault-Larrecq.
The H1 tool is actually a library of transformations over tree automata, seen as
sets of Horn clauses in the H1 class. In particular, the h1mc component is able
to generate unreachability proofs for tree automata in Coq [8]. Our approach
is similar to that one, except that we focus on proving the correctness of the
completion of a tree automaton w.r.t. a term rewriting system. This completion
algorithm is not included in the H1 suite. Other tools, e.g. Timbuk [13], TA4SP
[2] do exploit the completion, but do not generate proofs.

We experimented with some security protocols and APIs. Notably, we re-
examined the protocol based on Diffie-Hellman we discussed in [17]. A proof
for the forward secrecy property guaranteed by this protocol was generated by
Rewrite in 6 seconds, and is about 1600 lines long. On the other hand, Coq

took 4 minutes to check the generated file was indeed a correct proof. The full
specification and proof can be found at [11].

A nice comparison for our technique is offered by Courant and Monin [5]:
they proved in Coq the security of a cryptographic API used in ATMs. Their
manually-written proof is about 2100 lines long. Our Rewrite tool has been used
to prove the same security property [15]. The automatically generated Coq proof
is about 3200 lines long. However, while Coq verifies the manually-written proof
in a few seconds, ours requires more time to be checked: on our machine this
took 24 minutes. While this running time is still acceptable, it is still a couple
of orders of magnitude over the time for the manual proof. To compare these
results in a more fair way one must also take into account the time spent by
humans on writing proofs: surely [5] required much more effort and time to be
written.
Summary We introduce the problem and our contributions in Sect. 2, using
intuitive arguments. We give the formal definitions in Sect. 3. The completion
algorithm in then briefly discussed in Sect. 4. The generation of Coq proofs is
described in Sect.5.

2 The Problem

In this section, we introduce tree automata, term rewritings, and our contribu-
tion. Rather than starting with the formal definitions for them, we start from a
motivating example: a simple program static analysis. We show how our results
can be applied to this scenario, providing as little technical details as possible,
and rather focusing on intuition.

To keep our presentation simple, we consider a program excerpt involving
lists. More complex, security-related examples can be found at [11]. Lists are
built through the constructors cons(•, •), nil as usual, but we shall also use the
more compact notation [x1, . . . , xn] for cons lists. Below, variables a,b,c have list
values, and suffix, filter are functions we shall describe shortly.

a := Input; b := suffix(a); c := filter(b); Output c

We want to compute a static approximation of the behaviour of the code above.
For this, we assume to have previously inferred some information about the input
a, and the functions suffix, filter. From this information, we plan to deduce some
property about the output c. More in detail:

– Input a is known to be a list of bits in {0, 1}, i.e. a bit string. More precisely,
we know the value of a to be in the regular set (10|0)∗.

– We only have some partial information about function suffix. while we do
not know its exact dynamic semantics, it is known to return a suffix of its
argument.

– Function filter returns its list argument, dropping each element that is not im-
mediately followed by a duplicate of itself. For instance, filter([1, 1, 0, 1, 0, 0]) =
[1, 0].

– Finally, our goal is to show that output c is not a list beginning with 01,
that is: not of the form [0, 1, . . .].

First, we should convince ourselves that the goal can really be inferred from the
above information. Intuitively, a suffix of (10|0)∗ can never contain two consec-
utive 1 bits, since each 1 is followed by 0. So, each 1 bit will be removed by filter

and will not end up in variable c. This implies that c can not be [0, 1, . . .], which
is our goal.

Now, we show how to derive that result in a fully automatic way from a formal
specification of our scenario. We start by formalizing our knowledge about the
input a. To this purpose, we use a tree automaton, with the following transitions:

@a → nil @a → cons(1, cons(0, @a)) @a → cons(0, @a)

Its meaning should be rather intuitive. The language of the automaton state
@a is formed by lists, and is inductively defined by the transitions above. The
first transitions provides the base case, while the following ones allow one to
combine a list in the language with the prefixes 1, 0 or 0, respectively. Clearly,
the language of @a is (10|0)∗.

We can now model out knowledge about the function suffix, and the related
assignment in the program itself. This can be done by augmenting the tree
automaton as follows:

@b → @a @b → tail(@b)

The language of the new automaton state @b contains the language of @a, and
is closed under the tail operation, which we shall define now so to return the
second component of a cons cell. Therefore, @b includes all the suffixes of @a.
To properly define tail, we use a rewriting rule.

tail(cons(X, Xs)) ⇒ Xs

Finally, we need to tackle the last assignment in the program, involving the filter

function. A simple automaton transition suffices:

@c → filter(@b)

Of course, now we need rewriting rules for the filter operation.

filter(nil) ⇒ nil
filter(cons(X, nil)) ⇒ nil
filter(cons(X, cons(X, Xs))) ⇒ cons(X, filter(cons(X, Xs)))
filter(cons(0, cons(1, Xs))) ⇒ filter(cons(1, Xs))
filter(cons(1, cons(0, Xs))) ⇒ filter(cons(0, Xs))

The above is an inductive definition for dropping all the elements of a list that
have no duplicate following them. The first two rules handle the base cases
(length ≤ 1). The third rule handles the duplicates. Note that this rule has two
occurrences of the variable X in its left hand side (such a rule therefore is non-
linear). Finally, the last two rules handle the non-duplicate case, for the bits 0
and 1.

Now, we must state the goal of our analysis: @c must not contain values of
the form [0, 1, . . .]. First, to make it more convenient, we explicitly mark all the
unwanted values with a failure constructor.

cons(0, cons(1, X)) ⇒ failure(cons(0, cons(1, X)))

Then, we simply require that @c has no failure(•) value. Technically, this is done
in Rewrite with the line

| @c : failure(X) => @zzResult : !FAIL!

The actual meaning of the goal above can more precisely be stated as follows: we
do not have @c →∗⇒∗ failure(X), for any instantiation of X . So, our goal states
the unreachability of a class of terms from the state @c, through automaton
transitions and term rewritings. We shall formalize this in Sect. 3.

Above, we showed both the transitions forming a tree automaton, and the
rewriting rules of a term rewriting system. These form a complete specification

that can be passed to Rewrite. Indeed, the actual Rewrite input file contains
only the lines shown above, and a declaration of each term constructor and the
associated arity.

Running Rewrite on this specification quickly produces the result of the static
analysis: there are indeed no failure(•) terms in @c. At the same time, a Coq proof
is produced, stating the same fact, in a reasonably human-readable form:

Lemma Unreachability_1 : ~ exists x1, O_zac (h_failure x1) .

In Coq, @ is rendered as O_za, so O_zac stands for @c, while term constructors
(“heads”) are prefixed with h_. Aside from this minor encoding, the meaning of
the lemma is very immediate and clear. Of course, one does need to check that
the definition of O_zac in the Coq file indeed corresponds to the intended one:
the language of @c, closed under all the term rewriting rules. Since this check
must be performed by manual inspection or with the help of a small trusted
tool, it is very important to make it as simple as possible. In other words, we
must keep the definitions in the Coq file as close as possible to the ones in the
original specification, even if this makes the proofs more complicated or harder
to generate.

We indeed claim our formalization in Coq to be very close to the original
specification. We now support this statement by showing some excerpts from the
Coq file generated by Rewrite. Here is a part of the definition of the automaton,
listing the inductive definition for O_zac.

Inductive [...] O_zac : St := [...]

| T_O_90 : forall x1, O_zab x1 -> O_zac (h_filter x1)

| T_O_91 : forall t1 t2, O_zac t1 -> RCs t1 t2 -> O_zac t2

The first line models the @c transition we showed above: when term x1 belongs
to (the language of) the state O_zab (@b), then filter(x1) must belong to O_zac

(@c).
The last line explicitly closes O_zac under the rewriting relation RCs, in

order to close O_zac under rewriting. The RCs relation is defined as the reflexive
transitive closure of another relation RC.

Inductive RCs : term -> term -> Prop :=

| RCs_S : forall t, RCs t t

| RCs_T : forall t1 t2 t3, RCs t1 t2 -> RC t2 t3 -> RCs t1 t3

In turn, relation RC is defined to be the closure under (ground) contexts of the
relation R. This is done by closing it under each term constructor, as it is done
for tail below.

Inductive RC : term -> term -> Prop := [...]

| RC_R : forall t u, R t u -> RC t u

| RC_h_tail : forall t1 u1, RC t1 u1 -> RC (h_tail t1) (h_tail u1)

Finally, R is defined from the rewriting rules introduced above. Here is the excerpt
related to tail:

Inductive R : term -> term -> Prop := [...]

| R_6 : forall V_X V_Xs , R (h_tail (h_cons V_X V_Xs)) V_Xs

As one might guess, R relates tail(cons(X, Xs)) and Xs. Once this relation R is
closed under contexts and by reflexivity and transitivity, one gets the usual term
rewriting relation. Therefore, the relation RCs is indeed the intended rewriting
relation. Hence, the languages of the automaton are indeed closed under rewrit-
ings, and the unreachability lemma shown before correctly models our goal.

3 Background: Term Rewriting and Tree Automata

In this paper we shall use the following denumerable sets: the set Q of states
(@q, @a, @b, @c, . . .) , the set X of variables (X , Y ,. . .) , the set F of function
symbols (f, g, 0, 1, . . .). Terms are defined as usual.

Definition 1. The set of terms T is inductively defined by

T ::= X variable
@q state
f(· · · , T, · · ·) application

By definition, we have Q ∪ X ⊆ T . Moreover, we assume that each function
symbol f has a fixed associated arity. Note that the arity can be zero, so that we
can use constants. When the arity is zero, we simply write f instead of f().

The size of a term is the number of the applications occurring in it. The
depth of a term is the maximum number of nested applications. For instance, g,
f(X), and f(@q) have depth and size 1, while f(g, h) has depth 2 and size 3, and
X and @q have depth and size zero. The variables occurring in a term T are
denoted by vars(T).

Also, we adopt the following conventions: a ground term (∈ Tgr) is a term
with no occurring variables; a simple term (∈ Tsm) is a term with no occurring
states; a pure term (∈ Tpr) is a term which is both ground and simple; a plain
term (∈ Tpl) is a ground term of depth at most one.

Accordingly, we shall use the sets Cgr, Csm, Cpr to denote the sets of ground,
simple, and pure contexts C[•], respectively. That is, C[•] ∈ Ctype iff C[T] ∈ Ttype,
where T is an arbitrary pure term, and type ranges over gr, sm, pr. Sometimes,
we also use contexts with many placeholders C[•, . . . , •].

A substitution is a function σ : X → Tgr. We adopt the usual notation σx for
the application σ(x). Substitutions are homomorphically extended to terms. So,
we write σT as the application of the extension of σ to term T .

Below, we give the definitions for rewriting systems and automata.

Definition 2. A term rewriting system R is a finite set of rewriting rules R
having the form L ⇒ R, where L, R ∈ Tsm and vars(R) ⊆ vars(L).

Def. 3 is slightly non standard since we want it to be directly usable in Coq.

Definition 3. Given a term rewriting system R, we define the relation ⇒•⊆
Tgr×Tgr as the one obtained from ⇒ by instantiating all the variables, i.e. L′ ⇒•

R′ iff

∃L, R, σ ∈ (vars(L, R) → Tgr). L′ = σL ∧ R′ = σR ∧ L ⇒ R

Similarly, we define the relation ⇒[•] as the reflexive closure under contexts of
⇒•. More formally, ⇒[•] is the minimum relation such that

1. ∀T ∈ Tgr. T ⇒[•] T

2. ∀T1, T2 ∈ Tgr. T1 ⇒• T2 =⇒ T1 ⇒[•] T2

3. ∀f ∈ F , T1 . . . Tarity(f)U1 . . . Uarity(f) ∈ Tgr.

(∀i. Ti ⇒[•] Ui) =⇒ f(T1, . . . , Tn) ⇒[•] f(U1, . . . , Un)

Finally, the relation ⇒[•]∗ is the transitive closure of ⇒[•].

When we need to make R explicit, we add it to the above notations, e.g. ⇒
[•]∗
R .

The definition of ⇒• is standard. By comparison, the relation ⇒[•] has a
rather complex definition, so we describe it here in more intuitive terms. Basi-
cally, the relation ⇒[•] is similar to the closure under contexts of ⇒•, which we
write as ⇒[•]. Using the latter, we have C[T] ⇒[•] C[U] whenever T ⇒• U and

C ∈ Cgr. Instead, ⇒[•] allows multiple parallel rewritings to be performed in a
context, e.g. relating C[T1, T2] with C[U1, U2] whenever Ti ⇒• Ui, ∀i ∈ {1, 2}.
Therefore, while ⇒[•] allows one to rewrite exactly one subterm, the relation

⇒[•] allows to rewrite any number, including zero, of disjoint subterms. A sim-
ple inductive argument shows that the relations ⇒[•] and ⇒[•] have the same

reflexive transitive closure, i.e. the one defined above as ⇒[•]∗. So, we could have
used the simpler relation ⇒[•] instead of the more complex ⇒[•] as the basis

for the definition of ⇒[•]∗. Again, we chose the apparently more complex one to
ease the translation into Coq.

Definition 4. A non deterministic finite tree automaton (NTFA) A is a pair
(QA, TA), where QA = {@a, @b, . . .} is a finite set of states and TA is the finite
set of transitions. Transitions have the form @q → T , where T ∈ Tpl. To simplify
notation, we identify TA with A, and simply write (@q → T) ∈ A instead of
(@q → T) ∈ TA. We sometimes write several transitions in the compact form
@q → T1, . . . , Tn, meaning @q → T1, . . . , @q → Tn.

Note the transitions of a NTFA are either of the form @a → @b (ǫ-transition)
or of the form @a → f(@b1, . . . , @bk). We allow ǫ-transitions in the definition
above since they can be used in the input to Rewrite and allow for a nice formu-
lation of data flow abstraction [17]. All automata we shall use here are NTFA,
so we will often refer to them as “automata”, simply.

Definition 5. A set I of intersection constraints is a set of triples of states,
i.e. I ⊆ Q ×Q×Q. We write each triple in I as a constraint @a ⊇ @b ∩ @c.

Intersection constraints are useful to precisely approximate equalities in guards.
For instance, consider P1 ; if x=y then P2(x). We can compute approxima-
tions @x and @y for the values of variables x and y after P1. We could safely use
@x when approximating P2(x), neglecting the guard x=y, and pretend that every
value of @x can reach P2(x). A better approximation can be computed by refin-
ing @x to a new state @x′ and adding an intersection constraint @x′ ⊆ @x∩@y.
Intersection constraints were used for modelling a version of Kerberos [17].

Each state of an automaton A has an associated language, which intuitively
is the set of terms reachable through transitions. When a set of intersection
constraints I is also taken into account, the languages of the states of A are closed
so that the constraints are satisfied. Similarly, when working with a rewriting
system R, languages are also closed under rewritings. We can now formalize this
fact.

Definition 6. Given A,R, I we define the languages of its states up to rewrit-
ings in R through the following inference rules. We write @q A,I,R T when
term T ∈ Tpr is in the language of @q according to A, I, and taken up to
rewritings in R. When unambiguous, we shall omit the indexes and simply write
@q T .

Direct
@b T

@a T
(@a → @b) ∈ A Rew

@a T1

@a T2
T1 ⇒

[•]∗
R T2

Cons
∀i ∈ [1, n]. @bi Ti

@a f(T1, . . . , Tn)
(@a → f(@b1, . . . , @bn)) ∈ A

Inters
@b T @c T

@a T
(@a ⊇ @b ∩ @c) ∈ I

It is sometimes convenient to refer to the relation as defined using only a
few selected inference rules from those above. In these cases we shall write them
explicitly, e.g. Cons

4 Background: Completion

Intuitively, the completion algorithm takes A, I,R and outputs another automa-
ton F , such that its languages include those of A. Further, the main property
of F is that its languages are already closed under R and I, i.e. inference rules
Rew and Inters are redundant for F . This means that the triple A, I,R can be
over-approximated with F alone, thus effectively discarding the I and R compo-
nents. Therefore, one can infer facts about the language of A up to rewriting by
inspecting the automaton F , only. This is convenient because the inspection of
an automaton is simple to perform, while reasoning about general term rewriting
systems is difficult, often leading to undecidability – indeed, manually writing a
Coq proof on A up-to-rewriting can be very hard.

To keep our presentation simple, we here assume that the automaton A has
a single goal state, the language of which is the only one we care about. This
intuitive statement will be correctly formalized below, when we shall introduce a

preorder for the automata. Note, however, that the techniques we present in this
paper can easily be extended to handle multiple goal states, and that Rewrite

indeed does not rely on this assumption in any way.
The purpose of completion can be understood using the inference rules of

Def. 6. Given A, I,R, and the goal state @q, we consider its language WA =
{T |@q A T }. The result of the completion is another automaton F , the states
of which include all the states occurring in I, as well as the goal state @q. Let the
new language of @q be WF = {T |@q F T }. Then, the automaton F satisfies

WF = {T |@q Direct,Cons
F T } (1)

WA ⊆ WF (2)

Property (1) states that terms in the language WF can be derived without
using rules Rew and Inters. In other words, we can neglect the rewritings in R
and the intersection constraints in I when we study WF . This leads to a decision
procedure for determining whether a pure term T belongs to WF , which we shall
describe below.

Property (2) states that WF is an over-approximation of WA. So, when the
decision procedure results in T not belonging to WF , we can automatically infer
T 6∈ WA (the converse is not true, because the approximation WF can be larger
than WA). Hence, we can effectively use the decision procedure to prove facts
about WA, and therefore about A, I,R.

Deciding Membership We give now a very short description of the decision pro-
cedure: the actual details can be found in [16]. Basically, we try to build a
derivation for @q F T using only rules Direct and Cons. We proceed bottom-
up from the goal @q Direct,Cons

F
T and try the rules for all the transitions of F

in a non-deterministic way (the non-determinism branching is bounded by |TF |).

In a finite time, we can then decide whether @q Direct,Cons
F

T . While we use this
näıve membership test in our proofs, more efficient algorithms exist [3].

Comparing Automata We now introduce a preorder to compare automata. Given
the goal state @q, we write A ⊑ A′ when @q A T implies @q A′ T . We write
A ≡ A′ when both A ⊑ A′ and A′ ⊑ A. Note that this involves all the rules of
Def. 6, and not only Direct and Cons.

The completion algorithm used in Rewrite exploits the following automaton
transformations, changing A into A′ with A ⊑ A′.

Augment
A ⊑ A ∪ (@l → T)

T ∈ Tpl

Transitivity
(@l1 → @l2) ∈ A (@l2 → T) ∈ A

A ≡ A ∪ (@l1 → T)

Join
∀T . (@l1 → T) ∈ A ⇐⇒ (@l2 → T) ∈ A

A ≡ A{@l2/@l1}

@l1 6= @q
@l1 6∈ states(I)

Rule Augment simply adds a transition to A, clearly preserving our preorder.
Rule Transitivity short-cuts two transitions, yielding a completely equivalent au-
tomaton. Rule Join is more peculiar. It replaces one state @l1 with another state

Inputs: A, I,R
Output: F

1. F := A
2. repeat close F under Transitivity

3. close F under intersection constraints I
4. apply rule Join in F as much as possible
5. for each critical pair w.r.t. R
6. resolve the pair by applying Augment to F
7. until F reaches a fixed point

Fig. 1. The Rewrite completion algorithm

@l2, under the assumption they have the same transitions (and therefore recog-
nize the same language). The languages recognized by the states are unaffected,
except for @l1 which disappears from the automaton. The side conditions of rule
Join ensures that @q as well as the states mentioned in I are not removed from
the automaton, so that equivalence is indeed preserved.

The Completion Algorithm The exact way of applying the transformations above
to form the completion algorithm used in Rewrite is detailed in [16]. Here, we
only describe the portions of it that are relevant to the generation of the Coq

proof. Notably, we omit how we ensure termination. The (simplified) main loop of
Rewrite is shown in Fig. 1. We start from F = A, and apply the transformations
until we reach a fixed point.

In step 2, we look for pair of transitions of the form @a → @b and @b → T ;
when that happens we add @a → T to F . In step 3, for each intersection
constraint @a ⊆ @b ∩ @c, we look for transitions of the form @b → Tb and
@c → Tc. Then we adapt the language of @a to include (an over-approximation
of) the terms reachable from both Tb and Tc. In step 4, we merge the states
having the same transitions, applying the Join rule. This is not strictly necessary
for the soundness of the algorithm, but it proved to be an useful optimization in
our applications [17]. Of course, when generating the Coq proof, we shall cope
with the merging of states.

In step 5, we deal with rewritings. We look for critical pairs, i.e. terms genera-
ble through the automaton that are also subject to some rewriting. For instance,
if we find @a → fst(@b) and @b → cons(@c, @d), we have a critical pair together
with the rewriting fst(cons(X, Y)) ⇒ X . When this happens, we resolve the pair
in step 6, by applying Augment to add @a → @c to F . In the general case,
this might be more complex (see [16]), but we can always resolve pairs through
Augment. The termination of the algorithm can be enforced as shown in [16].
Upon termination, it should be clear that we have A ⊑ F , since we modified F
through our preorder-preserving transformations, only. This implies the wanted
relation between the languages of @q we introduced before, i.e. WA ⊆ WF . Fur-
thermore, we also have the other wanted property, WF = {T |@q Direct,Cons

F T },
since F is closed under Inters in step 3, and closed under Rew in step 5.

The automaton F actually satisfies the following stronger property.

WF = {T |@q Cons
F T } (3)

So, each term in WF can be built through Cons rules, only. This property holds
because in step 2 we closed F under Direct. When generating the Coq proofs,
this will turn out quite useful.

5 Certifying Unreachability in Coq

We now discuss how we generate the correctness proofs for F . In Sect. 2, we al-
ready showed parts of the generated proof for an example. There, we presented
the statement of an unreachability lemma and some inductive definitions, in-
volving only A and R as provided by the user (I was empty in the example).
Here, we complete the missing parts, discussing the role of F in the actual proof.
Providing a detailed semantics for Coq is clearly outside the scope of this paper,
so we shall often appeal to intuition in this section, and refer the reader to [4].

First, we need to provide Coq definitions for terms, the inputs A, I,R, and
the output F . Terms are defined through Coq Inductive declarations.

Inductive term : Set := [...]

| h_cons : term -> term -> term

The above also fixes the arity of term constructors (e.g. two for h_cons).
We now deal with R, defining the relations introduced in Def. 3. Actually,

we already formalized these in Coq in Sect. 2, so we briefly make the connections
clear. The relation ⇒• (in Coq: R) poses no problem: instantiating all the vari-
ables with terms in a rewriting rule is simply done by universally quantifying
these variables over all the terms. The relation ⇒[•] (in Coq: RC) is defined ex-
actly following points 1,2,3 in Def. 3: point 3 is expanded for all term constructors
f. Finally, the relation ⇒[•]∗ (in Coq: RCs) is a simple transitive closure.

In our Coq proofs, automata states are defined through their languages, i.e.
as sets of terms. Rather than using a Coq library for set theory, we found the
standard encoding of sets into the corresponding predicates to be enough for our
purposes. So, below we define St to be the type representing the sets of terms.

Definition St := term -> Prop .

We can now define the automaton A by specifying the languages for all its states.
This is done by closely following Def. 6, forming a single mutually recursive
definition for the whole automaton. Rules Direct and Cons are expanded for all
the transitions of A. Similarly, rule Inters is expanded for all the intersection
constraints in I. Rule Rew instead is not expanded, but is stated using the
relation RCs introduced before. We stress that this way of defining A makes it
closed under all the rules of Def. 6.

In Sect. 2 we showed the result for the state O_zac: there, the line T_O_90

derives from the Cons rule, while the line T_O_91 derives from the Rew rule. No

Direct rule is applicable there, since there is no transition @q → @w in A for
any @w. Furthermore, in the example I is empty, so Inters never applies.

We define the result of the completion, i.e. the automaton F , in a slightly
different way. Since a main objective of the proof is to show that rules Inters and
Rew are unnecessary, we neglect them when defining the languages of F . Except
for this, we proceed as for A, i.e. we expand rules Direct and Cons over all the
transitions of F .

Finally, we can state and prove the correctness results. We introduce an
auxiliary relation incl_T to link the states of A to those of F , intending that
when incl_T holds between @a and @b, then we expect the language of @a to
be included in that of @b. Basically, incl_T relates the states with the same
names, except for the first belonging to A and the second to F . Also, here we
must take into account the Join operations performed during completion. If we
merged two states in F , making one of them disappear, then incl_T must point
at the state that is still present in F . In the general case, multiple merges are
possible, so we need to follow the Join chain and to make incl_T use the state
still present in the result of the completion F . Of course, the goal state @q is
never removed from F because of the Join side condition, so incl_T just relates
the @q in A to the @q in F . The actual definition of incl_T is just a table.

The main correctness result is then the following one, which implies proper-
ties (1) and (2). Intuitively, it states that the languages of A are contained in
the corresponding ones in F .

Lemma Automaton_T_is_a_safe_overapproximation_of_automaton_O :

forall s_o s_t t, incl_T s_o s_t -> s_o t -> s_t t .

To prove the above lemma, we use a number of other results. Among those,
we show that F is closed under rewritings in R, as well as under intersection
constraints in I. Below, State_T and intCon_T are predicates, enumerating all
the states of F and the constraints in I, respectively.

Lemma Automaton_T_closed_under_RCs :

forall s_t t u, State_T s_t -> s_t t -> RCs t u -> s_t u.

Lemma Automaton_T_satisfies_intersection_constraints :

forall s1 s2 s3 t, State_T s1 -> intCon_T s1 s2 s3 ->

s2 t -> s3 t -> s1 t .

Proving in Coq the above three lemmata turned out to be difficult. Of course,
these proofs are inductive arguments. We tried several Coq proof tactics for that.

First, we considered the induction tactic to perform some kind of structural
induction. Unfortunately, structural induction on term t is not enough to prove
the lemmata above. This is because, in the general case, we are not able to reduce
the inductive properties to a proper subterm of t. This reduction is possible for
the Cons case, that removes a constructor from t. For instance, when the only
transition from @a is @a → f(@b), and we must show O_zaa (f t2), then we
can reduce that to showing O_zab t2, and apply the induction hypothesis on the
smaller term t2. However, this is not the case for the Direct case which simply
changes the state @a to another state, without affecting t.

Structural induction failing, we tried rule induction on the definition of the
automaton languages, i.e. on the rules of Def. 6. For mutually recursive defini-
tions, as those we use, this is best done in Coq with the Minimality induction
principle scheme. This was still not enough. The problem lies in searching for
critical pairs, e.g. in the lemma stating that F is closed under R. Assume we
have R = {f(g(X)) ⇒ X}, and a transition @a → f(@b). In order to show that
@a is closed under this rewriting rule, we need to search in the language of @b
for terms matching g(X). For this, the induction hypothesis offers no help, since
it deals only with terms matching f(g(X)), saying nothing about g(X). Unfortu-
nately, finding matches by a simple case analysis of the transitions of @b is not
feasible (i.e. using the Coq tactic inversion, which enumerates the immediate
inductive subcases). This is because we might find a transition loop, e.g. formed
by @b → @c and @c → @b, and get stuck in the Direct case. We thought of
several ways to escape from this impasse:

– We could change the induction predicate to consider partial matches of a
left hand side of a rewriting rule. This seems to be hard.

– We could detect loops, and in that case start a new subproof by rule induc-
tion. We deemed this to be quite complex as well.

– We could reduce the problem to something else involving a simpler inductive
definition, hopefully not causing the issues above.

Equation (3) indeed suggests that the third way is doable, since we can neglect
Direct rules for F without affecting its languages. Hence, we define another
automaton N , identical to F except for the transitions of the form @a → @b,
which we drop. We prove in Coq that N and F are equivalent.

This equivalence proof is done by rule induction. The only non-trivial case
is to show that, when @a F T is derived from @b F T by Direct and
(@a → @b) ∈ F , then we also have @a N T . Here, by induction hypothesis
we get @b N T . We now conclude showing that, in N the language of @b
is included in that of @a. This is done by case analysis (inversion) on the
transitions of N , since for each transition @b → U we can find a transition
@a → U . The latter was inserted by the completion algorithm when closing
under the Transitivity transformation.

So, we prove the lemmata stated above on N first, and transfer then the
results to F , leveraging on the equivalence. Proving that N is closed under
rewritings is now almost trivial: we do not even need full induction for that.
With a finite number of Coq inversions, we can find all the critical pairs,
i.e. all the matches with the left hand sides of the rewriting rules. This case
analysis always terminates, since each inversion removes one constructor from
the matched term. For each critical pair we find, we show that the rewritten
term is indeed included in N by pointing at the transitions we added to the
automaton through Augment in step 6 of the completion algorithm. When the
added transition was of the form @a → @b, and so it is in F but not in N (recall
that N does not contain ǫ-transitions), we redo a part of the F–N automata
equivalence proof to prove the language of @b included in that of @a.

Showing that N is indeed closed by I, i.e. by Inters, is done in the same
way: by case analysis, and then by pointing to the transitions added during
completion. This is our third lemma above.

Finally, we can show the main lemma, stating A is over-approximated by N .
This is done by rule induction on the rules in Def. 6 for the transitions of A.
The Rew and Inters cases are shown by the auxiliary lemmata. The Cons case
follows from the induction hypothesis, since the transition of A used for Cons is
still present in N (possibly using different states if Join was applied, but incl_T
took that into account). For the Direct case, once again we redo the part of
the F–N automata equivalence proof to show the inclusion of languages. This
completes the proof.

We conclude the proofs by showing the unreachability goals included in the
input to Rewrite, as that shown in Sect. 2. This is done first by case analysis
on N , and second by applying the main lemma to transfer the result to A. One
might note that we do not need to pass through F to show this goal, since N
suffices. Accordingly, Rewrite can be told to omit the proofs for F completely,
to provide a more compact proof of the unreachability goal on A, only.

The generation of the whole Coq proof, as described in this section, only
requires (parameterized) polynomial time in the size of F . This is not surpris-
ing, since the proof line is roughly related to running the last iteration of the
completion algorithm to check F is indeed a fixed point. Since the completion
is polynomial [14], so is generating the proof.

6 Conclusions

We briefly comment on the size of the generated proofs. Consider the example of
Sect. 2. Running Rewrite on that yields a proof file 753 lines long, and includes
the unreachability lemma of Sect. 2 and the correctness of the automata N and
F . If we only care about the unreachability lemma, the proof can be shortened
to 473 lines. On our desktop machine, Coq checked the proof in about three
seconds. The actual proof can be found at [11].

In our experiments, we also generated proofs for automatically generated tree
automata. Rewrite can also extract tree automata from cryptographic protocol
specifications in a process calculus [17], so we checked these automata as well.
A proof for the automata extracted from a Diffie-Hellman-based protocol is
about 4500 lines long, and was checked in 23 minutes. The generated proof for a
version of Kerberos is about 9000 lines long, and was checked in 161 minutes. In
all cases, computing the completion and generating the proof was much faster
than checking the proof.

Further, we studied Rewrite running times to understand the relative weights
of all the phases: completion, proof generation, proof checking (via Coq). We
were pleased to note in our experiments that the proof generation time was
practically negligible with respect to the time needed to compute the completion
F . We concluded that this was because of two distinct reasons:

– Our proof generation technique only needs the fixed point F to produce a
proof. In particular, all the intermediate approximations for F computed
by the completion algorithm are not used. First, this implies that there is
no overhead during all the intermediate loops of the algorithm. Second, this
also means that we do not need to certify anything about these intermediate
results, so we can save both proof generation time and proof checking time.

– In some “hard” parts of the proof generation, we simply instruct Coq to try
several tactics non-deterministically, rather than pointing at the actual one
that succeeds. In other words, sometimes we know that the proof can be
reached at the end of road A or road B; rather than computing which is the
right one first, we let Rewrite tell Coq to try both. We do use branch pruning
to avoid EXPTIME complexity. This means that much of the actual work
is deferred from proof generation to proof checking. The time penalty for
this is, roughly, only the one due to using the Coq tactic language instead of
Haskell. While we could use Haskell to prune proof branches, we found the
use of the Coq tactic language to be more convenient for this task, since in
Coq we can easily query the current proof subgoals, and react accordingly.

Finally, we add a note about Coq tactics. What is generated by the tech-
nique presented above is more precisely called a Coq tactic, i.e. a program that
generates the actual proof (which is roughly a λ-term). So, when we referred to
“proof-checking” we actually referred to running this tactic, and checking the re-
sulting proof. The generated tactic never fails and produces a correct proof. Note
however that this fact does not rule out bugs in the implementation: generated
tactics still have to be checked.

Concluding, in this paper we discussed how to certify, via a machine-checkable
proof, that the result of the completion algorithm on tree automata is indeed
correct, i.e. closed under rewriting. Our technique is general, and can be used
wherever the completion algorithm is used. We studied its implementation in our
tool Rewrite and experimented with certifying cryptographic protocol security.

References

1. AVISPA project home page. http://www.avispa-project.org.

2. Y. Boichut. Tree automata for security protocols (TA4SP) tool. http://lifc.univ-
fcomte.fr/∼boichut/TA4SP/TA4SP.html.

3. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997. release October, 1rst 2002.

4. The Coq proof assistant. http://coq.inria.fr.

5. J. Courant and J. Monin. Defending the bank with a proof assistant. In Proceedings
of WITS 2006, pages 87–98, 2006.

6. G. Feuillade, T. Genet, and V. V. T. Tong. Reachability analysis over term rewrit-
ing systems. Journal of Automated Reasoning, 33:341–383, 2004.

7. T. Genet, Y. T. Tang-Talpin, and V. V. T. Tong. Verification of copy-protection
cryptographic protocol using approximations of term rewriting systems. In Proc.
of Workshop on Issues in the Theory of Security, 2003.

8. J. Goubault-Larrecq. Une fois qu’on n’a pas trouvé de preuve, comment le faire
comprendre à un assistant de preuve? In Actes 15èmes journées francophones sur
les langages applicatifs (JFLA), pages 1 – 40, 2004.

9. H1: an automated deduction system (Web site). http://www.lsv.ens-
cachan.fr/∼goubault/H1.dist.

10. G. C. Necula. Proof-carrying code. In POPL, pages 106–119, 1997.
11. The Rewrite protocol analysis tool. http://www.di.unipi.it/∼zunino/software.
12. T. Takai. A verification technique using term rewriting systems and abstract

interpretation. In Proc. of Rewriting Techniques and Applications, volume 3091
of Lecture Notes in Computer Science, pages 119 – 133, 2004.

13. Timbuk tree automata tool. http://www.irisa.fr/lande/genet/timbuk.
14. R. Zunino. Models for Cryptographic Protocol Analysis. PhD thesis, Italy, Univer-

sity of Pisa, 2006.
15. R. Zunino. Defending the bank with a static analysis. In Proc. of NordSec, 2006,

http://www.di.unipi.it/∼zunino/papers.
16. R. Zunino and P. Degano. Finite approximations of terms up to rewriting.

http://www.di.unipi.it/∼zunino/papers/completion.html.
17. R. Zunino and P. Degano. Handling exp,× (and timestamps) in protocol analysis.

In Proceedings of FoSSaCS 2006, volume 3921 of LNCS, pages 413–427, 2006.

