
A Calculus of Contracting Processes

Massimo Bartoletti
Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari

Roberto Zunino
Dipartimento di Ingegneria e Scienza dell’Informazione, Universit̀a degli Studi di Trento

Abstract

We propose a formal theory of contract-based comput-
ing. We model contracts as formulae in an intuitionistic
logic extended with a “contractual” form of implication.
Decidability holds for our logic: this allows us to mechan-
ically infer the rights and the duties deriving from any set
of contracts. We embed our logic in a core calculus of con-
tracting processes, which combines features from concur-
rent constraints and calculi for multiparty sessions, while
subsuming several idioms for concurrency.

1 Introduction

In Web transactions, the typical dynamics is that a client
chooses a service provider that she trusts, relying on the
fact that the service implements the required features. Such
features are typically written in a “service level agreement”
(SLA). Although this document is legally binding, it is not a
formal specification. Formalising it would be desirable, for
two main reasons. First, a formal SLA could be exploited
by the client to mechanize the search of a service meeting
her requests. Second, in the case the provider does not hon-
our its SLA, automatic means could be devised to resolve
the dispute. This would be more practical than taking legal
steps against the provider, especially for transactions deal-
ing with small amounts of money.

The interaction among parties has then to be regulated by
a suitablecontract, which formally subordinates the duties
of a client to the duties of a service, andvice versa. The
crucial problems are how to model a contract, how to infer
when a set of contracts gives rise to an agreement among
the stipulating parties, and how to single out the responsible
of a possible violation.

An example. To give the intuition about our contracts,
suppose there are two kids: Alice, who has a toy airplane,
and Bob, who has a bike. Before sharing their toys, the two
kids stipulate the following “gentlemen’s agreement”:

Alice: I will lend my airplane to you, Bob, provided that I
borrow your bike.

Bob: I will lend my bike to you, Alice, provided that I bor-
row your airplane.

Let us writea for the atomic proposition “Alice lends her
airplane” andb for “Bob lends his bike”. A (wrong) formal-
isation of the above contracts in classical logic could model
Alice’s contractA asb → a, and Bob’sB asa → b. How-
ever, from this we cannot deduce the expected agreement,
i.e. A ∧ B → a ∧ b does not hold. To solve this issue, we
propose Propositional Contract Logic (PCL), that extends
intuitionistic logic IPC with acontractual implicationcon-
nective։. In PCL we have the desired agreement:

(b ։ a) ∧ (a ։ b) → a ∧ b

To put our contracts at work, we introduce a process calcu-
lus which embeds our logic. This calculus belongs to the
family of concurrent constraints [35], using PCL formulae
as constraints. A process can assert a constraintc (a PCL
formula) through the primitivetell c. For instance, the fol-
lowing process models Alice exposing her contract:

(x) tell b(x) ։ a(x)

Formally, this will addb(x) ։ a(x) to the set of con-
straints. The formal parameterx represents the identifier
of the actual session to be established between Alice and
Bob. As it happens for sessions centered calculi [38, 14],
sessions are an important aspect also in our calculus, since
they allow for distinguishing among different instantiations
of the same contract. The outer(x) is a scope delimitation
for the variablex, similarly to the Fusion calculus [32].

After having exposed her contract, Alice will wait un-
til finding that she has actually to lend her airplane to Bob.
This is modelled asfusex a(x). The primitivefusex c imple-
ments a contract-based multiparty agreement. To do that, it
checks the entailment of the constraintc, and binds the vari-
ablex to an actual session identifier, shared among all the

parties involved in the contract. So, we will model Alice as:

Alice = (x)
(

tell b(x) ։ a(x). fusex a(x). lendAirplane
)

where the processlendAirplane (no further specified) mod-
els Alice actually lending her airplane to Bob. The overall
behaviour of Alice is then:(i) issue the contract;(ii) wait
until discovering the duty of lending the airplane;(iii) fi-
nally, lend the airplane. Dually, we model Bob as follows:

Bob = (y)
(

tell a(y) ։ b(y). fusey b(y). lendBike
)

A possible interaction between Alice and Bob will be the
following, wheren stands for a fresh session identifier:

Alice|Bob →∗ (n)
(

lendAirplane{n/x} | lendBike{n/y}
)

As expected, the resulting process shows Alice and Bob
actually sharing their toys, in the session identified byn.

The logic PCL also allows for a more precise model of
the above scenario, by linking the contracts with the identity
of the principals issuing them (see Ex. 3). This information
can be exploited in our calculus to automatically detect the
responsible of a violation (see e.g. Ex. 6).

Contributions. We propose the logic PCL, which ex-
tends IPC with contractual implication. We provide it with
an Hilbert-style axiomatisation and a Gentzen-style sequent
calculus, which we prove equivalent. We study the relations
between PCL, IPC and classical logic. The main results
about PCL are cut elimination and decidability. We imple-
ment a proof search algorithm for PCL [37], also includ-
ing an extension with a lax modality, to explicitly link con-
tracts and principals. We then exploit PCL as a basic build-
ing block for designing a calculus of contracting processes.
Our calculus is expressive enough to encode several con-
currency idioms, among which Linda, theπ-calculus and
graph rewriting. We show our logic and calculus applicable
to model real-world scenarios through several examples.

Because of space constraints, we include all the proofs,
the encodings, as well as further results and examples about
our logic and calculus, in two Technical Reports [6, 5].

2 A Logic for Contracts

Desirable properties. We start by characterizing our
logic through a set of properties that we would expect to
be enjoyed by any logic for contracts.

As shown in Sect. 1, a basic property of contractual im-
plication is that of allowing two dual contracting parties to
“handshake”, so to make their agreement effective. This is
resumed by the followinghandshakingproperty:

⊢ (p ։ q) ∧ (q ։ p) → p ∧ q (1)

A generalisation of the above property to the case ofn
contracting parties is also desirable. It is a sort of “circu-
lar” handshaking, where the(i + 1)-th party, in order to
promise some dutypi+1, relies on a promisepi made by the
i-th party (in a circular fashion, the first party relies on the
promise of the last one). In the case ofn parties, we expect:

⊢ (p1 ։ p2) ∧ · · · ∧ (pn−1 ։ pn) ∧ (pn ։ p1)
→ p1 ∧ · · · ∧ pn

(2)

As a concrete example, consider an e-commerce scenario
where a clientC can buy items from a sellerS, and pay
them through a credit card. To mediate the interaction be-
tweenC andS, there is a bankB which manages payments.
The contracts issued by the three parties could be as follows:

Client: I will click “pay” provided that my item is shipped

Seller: I will ship your item provided that I get the money

Bank: I will transfer money to the seller provided that the
client clicks “pay”.

Let the atomic propositionsship, click, andpay denote,
respectively, the facts “seller ships item”, “client clicks
pay”, and “bank transfers money”. The above contracts can
then be modelled as:

C = ship ։ click B = click ։ pay S = pay ։ ship

Then, by property (2) we deduce a successful transaction:

⊢ C ∧ B ∧ S → pay ∧ ship

Note that, in the special casen = 1, the above “circular”
handshaking property turns into a particularly simple form:

⊢ (p ։ p) → p (3)

Intuitively, (3) models that promisingp provided thatp, im-
pliesp (actually, also the converse holds, so that promise is
equivalent top). It also follows from (1) whenp = q.

Another generalisation of the toy-exchange scenario to
the case ofn kids is also desirable. It is a sort of “greedy”
handshaking, because now a party promisespi only pro-
vided thatall the other parties promise their duties, i.e.
p1, . . . , pi−1, pi+1, . . . , pn.

⊢
∧

i∈1..n

(

(p1 ∧ · · · ∧ pi−1 ∧ pi+1 ∧ · · · ∧ pn)։ pi

)

→ p1 ∧ · · · ∧ pn

(4)

We will now focus on further logical properties of con-
tractual implication. As shown by (1), a contractp ։ q be-
comes effective, i.e. implies the promiseq, when matched
by a dual contractq ։ p. Even more directly,p ։ q should
be effective also when the premisep is already true:

⊢ p ∧ (p ։ q) → q (5)

2

In other words, contractual implication should bestronger
than standard implication, i.e.:

⊢ (p ։ q) → (p → q) (6)

On the other hand, we do not want that also the converse
holds, since this would equate the two forms of implication:
that is,6⊢ (p → q) → (p ։ q).

We want contractual implication to share with standard
implication a number of properties. First, a contract that
promises true (written⊤) is always satisfied, regardless of
the precondition. So, we expect the following tautology:

⊢ p ։ ⊤ (7)

Differently from standard implication, we do not want
a contract with a false precondition (written⊥) to always
hold, i.e. 6⊢ ⊥ ։ p. To see why, assume⊥ ։ p is a
tautology, for allp. Then, it would also be the case forp =
⊥, so (3) would deduce a contradiction:(⊥ ։ ⊥) → ⊥.

We want։ enjoy transitivity, similarly to→:

⊢ (p ։ q) ∧ (q ։ r) → (p ։ r) (8)

Back to our previous example, transitivity would allow the
promise of the client(ship ։ click) and that of the bank
(click ։ pay) to be combined in the promiseship ։ pay.

Contractual implication should also enjoy a stronger
form of transitivity. We illustrate it with the help of an ex-
ample. Suppose an air-flight customer who wants to book a
flight. The customer contract promises to pay the required
amount, provided that she obtains a flight reservation. Sup-
pose now that an airline company starts a special offer, in
the form of a free drink for each customer.

Customer = bookFlight ։ pay

AirLine = pay ։ bookFlight ∧ freeDrink

Of course, the two contracts should give rise to an agree-
ment, because the airline company is promising a better
service than the one required by the customer contract. We
then expect to be able to “weaken” theAirLine contract:

⊢ AirLine → (pay ։ bookFlight)

Alternatively, one could make the two contracts match by
making stronger the precondition required by the customer:

⊢ Customer → (bookFlight ∧ freeDrink ։ pay)

More in general, we want the following two properties
hold for any logic for contracts. They say that the promise
in a contract can be arbitrarily weakened (9), while the pre-
condition can be arbitrarily strengthened (10).

⊢ (p ։ q) ∧ (q → q′) → (p ։ q′) (9)

⊢ (p′ → p) ∧ (p ։ q) → (p′ ։ q) (10)

Note that (8), (9), (10) cover three of the four possible cases
of transitivity which mix standard and contractual implica-
tions. The fourth case would, instead, make the two forms
of implication coincide, so it isnot a desirable property.

Another desirable property is that, if a promiseq is al-
ready true, then it is also true any contract which promisesq:

⊢ q → (p ։ q) (11)

Of course, we do not want the converse to hold: a con-
tract not always implies its promise:6⊢ (p ։ q) → q.

Syntax. The syntax of PCL extends that of IPC. It in-
cludes the standard connectives¬,∧,∨,→ and the con-
tractual implication։. We assume a denumerable set
{p, q, r, s, . . .} of prime (atomic) formulae. PCL formulae
are denoted with the lettersp, q, r, s, . . . (note that the font
differs from that used for prime formulae). The precedence
of IPC operators is, from highest to lowest:¬,∧,∨,→. We
stipulate that։ has the same precedence as→.

Definition 1 The formulae ofPCL are defined as:

p ::= ⊥ | ⊤ | p | ¬p | p∨p | p∧p | p → p | p ։ p

We letp ↔ q be syntactic sugar for(p → q) ∧ (q → p).

We now present an Hilbert-style axiomatization for PCL.

Definition 2 The proof system ofPCL comprises all the
axioms of IPC, the Modus Ponens ruleCUT, and the axioms:

⊤ ։ ⊤ [ZERO]

(p ։ p) → p [FIX]

(p′ → p) → (p ։ q) → (q → q′) → (p′ ։ q′) [PREPOST]

The above axioms are a subset of the properties dis-
cussed above. The axiomZERO is a subcase of (7),FIX is
just (3), while the axiomPREPOST combines (9) and (10). As
expected, this set of axioms is actually sound and complete
w.r.t. all the properties marked above as desirable.

Lemma 1 Properties (1-11) are theorems ofPCL. Also:

⊢ (p ։ q) ∧ (q ։ r) → (p ։ (q ∧ r))

⊢ (p ։ (q ∧ r)) → (p ։ q) ∧ (p ։ r)

⊢ (p ։ q) ∨ (p ։ r) → (p ։ (q ∨ r))

⊢ (p ։ q) → ((q → p) → q)

We present below some of the most significant results
about our logic. For a more comprehensive account, in-
cluding detailed proofs of all our results, see [6].

First, PCL is consistent. Also, negation-free formulae do
not lead to inconsistencies.

3

Theorem 1 PCL is consistent, i.e.6⊢ ⊥. Also, if p is free
from{⊥,¬}, then6⊢ p → ⊥.

As expected, the following arenot tautologies of PCL :

6⊢ (p → q) → (p ։ q) 6⊢ (p ։ q) → q

6⊢ ⊥ ։ p 6⊢ ((q → p) → q) → (p ։ q)

Note that if we augment our logic with the axiom of ex-
cluded middle, then(p ։ q) ↔ q becomes a theorem. This
would make contractual implication coincide with right pro-
jection, so losing most of the intuition behind mutual agree-
ments. For this reason we use IPC, instead of classical logic,
as the basis of PCL .

Another main result about PCL is its decidability. To
prove that, we have devised a Gentzen-style sequent calcu-
lus, equivalent to the Hilbert-style axiomatisation. In par-
ticular, we have extended the sequent calculus for IPC pre-
sented in [33] with rules for the contractual implication։.
Note thatPREPOST introduces։ on the right, and eliminates
it on the left (similarly e.g. to#L of lax logic [19]).

Definition 3 The sequent calculus ofPCL includes all the
rules for IPC [6], and the following additional rules.

[ZERO]

Γ ⊢ q

Γ ⊢ p ։ q

[FIX]

Γ, p ։ q, r ⊢ p
Γ, p ։ q, q ⊢ r

Γ, p ։ q ⊢ r

[PREPOST]

Γ, p ։ q, a ⊢ p
Γ, p ։ q, q ⊢ b

Γ, p ։ q ⊢ a ։ b

We now establish the equivalence between the two log-
ical systems of PCL. In the following theorem, we denote
with ⊢H provability in the Hilbert-style system, while⊢G

is used for Gentzen-style provability.

Theorem 2 For all PCL formulaep: ⊢H p ⇐⇒ ∅ ⊢G p.

Our sequent calculus enjoys cut elimination. The proof
is non-trivial, since the rules for։ are not dual, unlike
e.g. left/right rules for∧. Nevertheless, the structural ap-
proach of [33] can be adapted. A cut on a formulap is re-
placed by cuts on strict subformulae ofp, and cuts onp hav-
ing a shorter proof tree. Some insightful cases of our proof,
as well as the induction metric used, are in Appendix A; the
full details are in [6].

Theorem 3 (Cut Elimination) If p is provable in PCL,
then there exists a proof ofp not using theCUT rule.

The subformula property holds in PCL. Cut-free proofs
only involve subformulae of the sequent at hand.

Theorem 4 (Subformula Property) Let D be a cut-free
proof of Γ ⊢ p. Then, the formulae occurring inD are
subformulae of those occurring inΓ andp.

Theorems 3 and 4 allow for exhaustively searching the
proof space, so implying decidability.

Theorem 5 The logicPCL is decidable.

As a further support to our logic, we have implemented
a proof search algorithm [37], which decides whether any
given formula is a tautology or not. Despite the problem
being PSPACE complete [36], the performance of our tool
is acceptable for the examples presented in this paper.

We now establish some expressiveness results, relating
PCL and IPC. More in detail, we consider whether sound
and complete homomorphic encodings exist, i.e. whether
։ can be regarded as syntactic sugar for some IPC context.

Definition 4 A homomorphic encodingm is a function
from PCL formulae to IPC formulae such that:m is
the identity on prime formulas,⊤, and ⊥; it acts ho-
momorphically on∧,∨,→,¬; it satisfiesm(p ։ q) =
C[m(p),m(q)] for some fixed IPC contextC(•, •).

Of course, each homomorphic encoding is uniquely deter-
mined by the contextC. Severalcompleteencodings exist:

Lemma 2 The following homomorphic encodings are com-
plete, i.e. they satisfy⊢ p =⇒ ⊢IPC mi(p). Also, they are
pairwise non-equivalent in IPC (the primea is arbitrary).

m0(p ։ q) = m0(q)
m1(p ։ q) = (m1(q) → m1(p)) → m1(q)
m2(p ։ q) = ¬¬(m2(q) → m2(p)) → m2(q)
m3(p ։ q) = ¬(m3(q) → m3(p)) ∨ m3(q)
m4(p ։ q) = ((m4(q) → m4(p)) ∨ a) → m4(q)

However, there can be nosoundencodings, so։ is not just
syntactic sugar. Indeed, a sound encoding would allow us
to derive Peirce’s axiom in PCL, violating the fact that PCL
conservatively extends IPC [6].

Theorem 6 If m is a homomorphic encoding ofPCL into
IPC, thenm is not sound, i.e. there exists aPCL formulap
such that⊢IPC m(p) and 6⊢ p.

In [6] we have proved further properties of PCL, includ-
ing some relations between PCL and IPC, the modal logic
S4, and propositional lax logic. Also, we have explored
there further application scenarios for our logic.

Example 1 (Online sale)We describe a possible online
sale between two parties. To buy an item, the buyer con-
tacts the bank, to reserve from his account a given amount
of money for the transaction. When this happens (mod-
elled with the prime formulalock), that amount is no longer
available. Then, the buyer makes an offer to the seller
(offer). When provided with a good offer, and the money
has been reserved, the seller will send the item (send). Oth-
erwise, she cancels the transaction (abort). When the trans-
action is aborted, the bank cancels the reservation (unlock),
so the money can be reused.

4

Formally, the buyer agrees tolock ∧ offer, provided that
either the item is sent, or the reservation is cancelled. The
seller agrees to evaluate the offer. The bank agrees to cancel
the reservation when the transaction is aborted.

Buyer = (send ∨ unlock) ։ (lock ∧ offer)

Seller = offer ։ ((lock → send) ∨ abort)

Bank = (lock ∧ abort) ։ unlock

Under these assumptions, either the item is sent, or the
transaction is aborted and the reservation cancelled:

⊢ (Buyer ∧ Seller ∧ Bank) → (send ∨ (abort ∧ unlock))

Example 2 (Dining retailers) Around a table,n cutlery
retailers are about to have dinner. At the center of the ta-
ble, there is a large dish of food. Despite the food being
delicious, the retailers cannot start eating right now. To
do that, and follow the proper etiquette, each retailer needs
a complete cutlery set, consisting ofn pieces of different
kinds. Each of then retailers owns a distinct set ofn piece
of cutlery, all of the same kind. The retailers start discussing
about trading their cutlery, so that they can finally eat.

We formalize this scenario as follows. We number the
retailersr1, . . . , rn together with the kinds of pieces of cut-
lery, so thatri initially owns n pieces of kindi. We then
write gi,j for “ ri givesa piece (of kindi) to rj”. Since re-
tailers can use their own cutlery, we assumegi,i to be true.
Retailerri can start eating wheneverei =

∧

j gj,i. Instead,
he provides the cutlery to others wheneverpi =

∧

j gi,j .
Suppose thatr1 commits to a simple exchange withr2:

they commit tog2,1 ։ g1,2 and g1,2 ։ g2,1, and the
exchange takes place sinceg2,1 ∧ g1,2 can be derived.
While this seems a fair deal, it actually exposesr1 to a
risk: if r3, . . . , rn perform a similar exchange withr2, then
g2,i ∧ gi,2 for all i. In particular, gi,2 holds for all i, sor2

can start eating. This is however not necessarily the case
for r1, sincer3 has not committed to any exchange withr1.

A wise retailer would then never agree to a simple ex-
changeg2,1 ։ g1,2. Instead, the retailerr1 could commit
to the following safer contract:

e1 ։ p1 = g1,1∧g2,1∧· · ·∧gn,1 ։ g1,1∧g1,2∧· · ·∧g1,n

The idea is simple:r1 requires each piece of cutlery, i.e.
r1 requires to be able to start eating (e1). When this hap-
pens,r1 agrees to provide each other retailer with a piece of
his cutlery (p1). If each retailerri commits to the analogous
contract, we have the desired agreement (proof in [6]).

⊢
∧

i(ei ։ pi) →
∧

i ei

Principals. As illustrated by the examples above, PCL al-
lows for inferring whether some promise is implied by a set
of contracts. In real-world scenarios, each contract will be

issued by a givenprincipal. It would then be useful to rep-
resent the binding between principals and contracts within
the logic. This would allow, for instance, to single out the
principal who is responsible for a violation, and possibly to
take countermeasures against him. To this aim, we extend
our logic with asays modality, similarly to [21].

Definition 5 The syntax of PCLsays extends that of
PCL (Def. 1) with the constructa says p, where we assume
a set of (atomic)principals, ranged over bya, b, . . .

The formulaa says p represents the fact that the prin-
cipal a has issued a contractp. We now develop the proof
theory of PCLsays . Essentially, we extend the PCL axioms
with those of the logic ICL [21]. This is an indexed lax
logic, where the lax modality corresponds tosays. Remark-
ably, this extension preserves all the main results of PCL,
in particular its decidability.

Definition 6 The Hilbert-style axiomatisation ofPCLsays

extends that ofPCL (Def. 2) with the following axioms:

p → (a says p) [SAYSR]

(a says a says p) → a says p [SAYSM]

(p → q) → (a says p) → (a says q) [SAYSF]

Example 3 We now make explicit the binding between the
duties and the principals of the toy exchange example of
Sect. 1. Alice commits herself to lend her airplane, provided
that Bob commits himself to lend his bike (andvice versa).

ptoy = Alice says ((Bob says b) ։ a) ∧

Bob says ((Alice says a) ։ b)

Such contract implies the expected duties:

⊢ ptoy → Alice says a ∧ Bob says b

The above duties can be exploited by a third party (a sort of
“automated” judge) which has to investigate the responsi-
bilities of the involved parties, in the unfortunate case that
the contract is not respected. For instance, if our judge is
given the evidence that Alice’s airplane has never been lent
to Bob, then he will infer that Alice has not respected her
contract (and possibly punish her), that is:

ptoy ∧ ¬a → (Alice says a) ∧ ¬a → Alice says ⊥

In Ex. 6 below, we shall see how the notion of principals is
exploited in our calculus of contracting processes.

Explicitly representing principals has some additional
benefits, especially when putting our logic at work in in-
secure environments populated by attackers. Actually, an
attacker could maliciously issue a “fake” contract, where he

5

makes a promise that he cannot actually implement, e.g. be-
cause the promised task can only be performed by another
party. By binding each contract with its principal, it is easy
to realize when someone has attempted such a fraud, be-
cause the principal who has signed the contract is different
from who is due to implement the promised behaviour.

Back to our technical development, all the main results
of PCL are also enjoyed by PCLsays (see [6] for details).

Theorem 7 If p is provable inPCLsays , then there exists a
proof ofp withoutCUT. Also, PCLsays is decidable.

3 A contract calculus

We now define our calculus. We use a denumerable set of
namesn,m, . . . and a denumerable set ofvariablesx, y, . . .
Metavariablesa, b range over both names and variables. In-
tuitively, names play the same role as in theπ-calculus,
while variables roughly behave as names in the fusion cal-
culus [32]. Distinct names represent distinct concrete ob-
jects, each one with its own identity. Instead, distinct vari-
ables can befused, by instantiating them to the same name.
Unlike [32], our calculus can fuse a variable only once.

Syntax. We extend prime formulae of PCL with names
and variables as parameters:p(a, b). Note that we do not
introduce quantifiers in PCL, which then remains a propo-
sitional logic. Indeed, the formulap(a, b) is still atomic
from the point of view of the logic. Similarly, names and
variables can appear as principals ina says p. Intuitively,
here names model known principals, while variables still-
unknown ones (see e.g. Ex. 6). We let lettersc, d range over
formulae, while lettersu, v range over{⊥,¬}-free formu-
lae. The syntax of our contract calculus follows.

π ::= τ
∣

∣ tell u
∣

∣ check c
∣

∣ ask~x c
∣

∣ fusex c (prefixes)

P ::= u
∣

∣

∑

i∈I πi.Pi | P |P
∣

∣ (a)P
∣

∣ X(~a) (processes)

Processes are mostly standard, and include active con-
straintsu, sum of guarded processes

∑

i πi.Pi, parallel
compositionP |P , scope delimitation(a)P . We use a set
of definitions{Xi(~x)

.
= Pi}i with the provision that each

occurrence ofXj in Pk is guarded, i.e. behind some prefix.
We write 0 for the empty sum, and we use+ to merge

sums, that is:
∑

i∈I πi.Pi +
∑

i∈J πi.Pi =
∑

i∈I∪J πi.Pi

whenI ∩ J = ∅. Singleton sums are simply writtenπ.P .
The prefixτ is the standard silent operation of CCS. The

prefixestell andcheck are those of Concurrent Constraints
(CC) [35]. A tell u augments the context with the (negation-
free) formulau. By Theorem 1, the context will always be
consistent. Acheck c checks ifc is consistent with the con-
text. The prefixask~x c generalizes the prefixask c from CC:
actually, they are equivalent when~x = ∅. An ask~x c stops
a process until formulac can be deduced from the context.

To make that happen, variables~x are suitably instantiated
to names. The prefixfusex c is peculiar of our contract cal-
culus, and drives the fusion of variables. Likeask, it stops
a process until instantiating some variables to names makes
c deducible. Note that the set of such variables is not spec-
ified in the prefix (as it was forask~x); instead, it is inferred
from the context according to thelocal minimal fusionpol-
icy, to be introduced in Def. 7. The variablex in fusex c
is instantiated to a fresh name, that intuitively represents a
fresh session identifier. Indeed, the intended use of afusex c
is to initiate a new session, by accepting a contract which
implies c. To do that,x is replaced by a fresh session ID,
and some variables in the context are possibly instantiated
to names (e.g. to bind unknown principals to actual ones).
Instead, anask can be used to join an already initiated ses-
sion (no fresh ID is then generated).

Free variables and names, as usual, are those not un-
der a delimitation. Alpha conversion and substitutions are
defined accordingly. As a special case, when a variable
x is instantiated to a name, the prefixfusex c behaves as
a plain ask c, i.e. (fusex c){n/x} = ask (c{n/x}). Also,
(askx~y c){n/x} = ask~y (c{n/x}). Henceforth, we consider
processes up-to alpha conversion.

Semantics. We now define the semantics of processes
through a two-layered transition system (Fig. 3). The bot-
tom layer is an LTS

α
−→ between processes, which provides

a compositional semantics. Actionsα are as follows, where
C denotes a set of PCL formulae.

α ::= τ | C | C ⊢A
~x c | C ⊢F

x c | C 6⊢ ⊥ | (a)α (actions)

The actionτ represents an internal move. The actionC
is an advertisement of a set of active constraints. The ac-
tion C ⊢A

~x c is a tentativeaction, generated by a process
attempting to fire anask~x c prefix. This action also carries
a setC as the collection of active constraints discovered so
far. Similarly forC ⊢F

x c andfusex c, as well as forC 6⊢ ⊥
andcheck c. In the last case,C also includesc. The de-
limitation in (a)α is for scope extrusion, as in the labelled
semantics of theπ-calculus. We write(~a)α for a set of dis-
tinct delimitations, neglecting their order, e.g.(ab) = (ba).
We simply write(~a~b) for (~a ∪~b).

The first two lines of Fig. 3 handle the base cases of
our semantics. The ruleTAU allows aτ prefix to fire. The
rulesASK, FUSE andCHECK simply generate the correspond-
ing actions. The ruleTELL adds a constraint to the environ-
ment, thus making itactive. Active constraints can then sig-
nal their presence through theCONSTR rule: each constraint
generates its own singleton. A sum of guarded processes
∑

π.P can instead signal that it isnot a constraint, by gen-
erating the empty set of constraints throughIDLESUM.

The rulesSUM, DEF (in the third line) are quite standard:
they handle external choice and (possibly recursive) defini-

6

τ.P
τ
−→ P [TAU] ask~x c.P

∅⊢A

~x
c

−−−→ P [A SK] fusex c.P
∅⊢F

x
c

−−−→ P [FUSE] check c.P
{c}6⊢⊥
−−−−→ P [CHECK]

tell u.P
τ
−→ u|P [TELL] u

{u}
−−→ u [CONSTR]

P

i πi.Pi
∅
−→

P

i πi.Pi [I DLESUM]

πj .Pj
α
−→ P ′

P

i πi.Pi
α
−→ P ′

[SUM]
P{~a/~x}

α
−→ P ′

X(~a)
α
−→ P ′

if X(~x)
.
= P [DEF]

P
α
−→ P ′

(a)P
α
−→ (a)P ′

if a 6∈ α [DEL]
P

α
−→ P ′

(a)P
(a)α
−−−→ P ′

[OPEN]

P
(~a)C
−−−→ P ′ Q

(~b)C′

−−−→ Q′

P |Q
(~a~b)(C∪C′)
−−−−−−−→ P ′|Q′

† [PARCONSTR]
P

(~a)C
−−−→ P ′ Q

(~b)(C′ 6⊢⊥)
−−−−−−→ Q′

P |Q
(~a~b)(C∪C′ 6⊢⊥)
−−−−−−−−−→ P ′|Q′

† [PARCHECK]
P

τ
−→ P ′

P |Q′ τ
−→ P ′|Q′

† [PARTAU]

P
(~a)C
−−−→ P ′ Q

(~b)(C′⊢A

~x
c)

−−−−−−−→ Q′

P |Q
(~a~b)(C∪C′⊢A

~x
c)

−−−−−−−−−−→ P ′|Q′

† [PARASK]
P

(~a)C
−−−→ P ′ Q

(~b)(C′⊢F
x

c)
−−−−−−−→ Q′

P |Q
(~a~b)(C∪C′⊢F

x
c)

−−−−−−−−−−→ P ′|Q′

† [PARFUSE] (†)
~a fresh in~b, C′, c, x, ~x, Q′

~b fresh inC, P ′

P
(~x~n~a)(C⊢A

~x
c)

−−−−−−−−→ P ′

P
τ
−→ (~n~a)P ′σ

if
Cσ ⊢ cσ
σ(~x) ⊆ ~n

[CLOSEASK]
P

(x~y ~m~a)(C⊢F
x

c)
−−−−−−−−−−→ P ′

P
τ
−→ (n~m~a)P ′σ

if
C ⊢σ c
σ(x) = n fresh
σ(~y) ⊆ n~m

[CLOSEFUSE]

P
τ
−→ P ′

P P ′
[TOPTAU]

P
(~a)(C 6⊢⊥)
−−−−−−→ P ′

P (~a)P ′
if C 6⊢ ⊥ [TOPCHECK]

Figure 1. The transition system for the contract calculus (symmetric rules for | are omitted).

tions, respectively. The rulesDEL, OPEN handle delimitation.
As usual, whena is not mentioned in an action, we can
propagate the action across a delimitation(a) using DEL.
The ruleOPEN instead allows for scope extrusion. Note that
OPEN has no side conditions: the checks needed for scope
extrusion are handled by thePAR* rules.

The next two lines of rules handle parallel composition.
The rulePARCONSTR merges the sets of constraints adver-
tised by two parallel processes. The rulePARASK allows for
augmenting the constraintsC in the tentative actionC ⊢A

~x c
generated by anASK, by also accounting for the set of con-
straints advertised by the parallel process. Similarly forthe
rulesPARFUSE andPARCHECK. The rulePARTAU simply prop-
agatesτ actions of parallel processes. ThePAR* rules also
merge the set of delimitations; variable and name captures
are avoided through the side condition(†).

TheCLOSE* rules are the crucial ones, since they provide
the mechanism to finalize the actions generated byask and
fuse. The ruleCLOSEASK instantiates the variables~x (origi-
nally in a prefixask~x c) to a subset of the names~n collected
so far. This is done through a substitutionσ. Whencσ is
deducible under the constraint setCσ, a silent actionτ is
generated, the delimitation(~n~a) is brought back to the pro-
cess level, andσ is applied to the residual processP ′. Note
that the restriction(~x) is no longer needed, as all the vari-
ables in~x have been instantiated byσ. The ruleCLOSEFUSE

instantiates a subset~y of the variables collected in the action
to a set of names. These names comprise a subset~m of the
collected ones, plus afreshnamen. The variablex (origi-
nally in a prefixfusex c) is instantiated ton. A transition is
then possible when the substitutionσ, defining the instan-
tiation, makes the formulac deducible from the constraint
setC under thelocal minimal fusionrelation⊢σ, to be de-

fined in a while (Def. 7). When this happens, a silent ac-
tion τ is generated, the delimitation(~n~m~a) is brought back
to the process level, andσ is applied to the residual pro-
cessP ′. Apart from generating a fresh name, another key
difference w.r.t.CLOSEASK is that the set of variables to be
instantiated is chosen rather arbitrarily byCLOSEFUSE, while
it is hard-wired in a prefix inCLOSEASK. This is the reason
why CLOSEFUSE checks local minimal fusion, and not just
deducibility, to further restrict the choice ofσ.

Summing up, the LTS given by
α
−→ allows for the gener-

ation of tentative actions forask andfuse (rulesASK,FUSE),
which can then be converted to

τ
−→ whenever enough con-

straints are discovered (rulesCLOSE*). Then, theτ action
can be propagated towards the top level (rulePARTAU). A
prefix check c, instead, cannot be handled in the same fash-
ion, since it requires to check the consistency ofc with re-
spect toall the active constraints. To this aim, we use the
reduction relation, layered over the

α
−→ relation. The re-

duction only includes internal moves
τ
−→ (rule TOPTAU)

and successfulcheck moves (TOPCHECK). This effectively
discards tentative actions, filtering the unsuccessful ones.

Definition 7 (Local Minimal Fusion) We writeC ⊢σ c iff:

∃C ′ ⊆ C : (C ′σ ⊢ cσ ∧ ∄σ′ ⊂ σ : C ′σ′ ⊢ cσ′)

A local minimal fusion requires a subsetC ′ of C (local-
ity restriction) such thatC ′ entailsc wheneverσ is applied.
Also, we wantσ to instantiate only those variables actually
involved in the entailment ofc – i.e. we require that no re-
strictionσ′ of σ suffices for the entailment.

To understand the motivations underlying the locality
restriction, note that a substitution may be minimal w.r.t.
a set of constraintsC ′, yet not minimal for a superset

7

C ⊃ C ′, as the following example shows. Letc = p(x),
C ′ = {q(y), q(z) ∨ s → p(y)} andC = C ′ ∪ {s}. To
obtainC ′ ⊢ c, all the variablesx, y, z must be instantiated
to the same name. So, this fusion (call itσ1) is minimal. In-
stead, to obtainC ⊢ c, we can use another substitutionσ2,
which fusesx with y and neglectsz, because the premise
q(z) ∨ s can now be discharged throughs. So, in this case
σ1 is not minimal, sinceσ2 ⊂ σ1. This phenomenon could,
in principle, lead to unexpected behaviour. For instance, let:

P = (x)(y)(z)(fusex c.R | R′) | s

Q = (x)(y)(z)(fusex c.R | R′ | s)

whereR′ is the parallel composition of the constraintsC ′.
Let us drop for a while the locality restriction. Then, in
P two minimal fusions would be applicable, depending on
CLOSEFUSE being used at the top-level (σ2) or not (σ1). In-
stead, inQ only σ2 would be possible. This clearly clashes
with our intuition thatP andQ should be equivalent, since
Q is obtained fromP through a scope extrusion. The local-
ity restriction allows for recovering such equality. Indeed,
σ1 is minimal forC ′ ⊆ C, so it is also applicable forQ.

The consequence of locality is that inspecting any set of
(locally) known contracts is enough to decide if a set of con-
tracts leads to an agreement – it is not necessary to (glob-
ally) explore the whole system. To a local observer, fusing
x, y, z may appear minimal. To a more informed observer,
the same fusion may appear non-minimal (the minimal one
fusingx, y). Both fusion are allowed by our semantics.

Example 4 (Handshaking) Recall from Sect. 1:

Alice = (x)
(

tell b(x) ։ a(x). fusex a(x). lendAirplane
)

Bob = (y)
(

tell a(y) ։ b(y). fusey b(y). lendBike
)

A possible trace ofP = Alice | Bob is the following:

P
τ
−→

2

(x)
(

b(x) ։ a(x) | fusex a(x). lendAirplane
)

|

(y)
(

a(y) ։ b(y) | fusey b(y). lendBike
)

τ
−→ (n)

(

b(n) ։ a(n) | lendAirplane{n/x} |

a(n) ։ b(n) | ask b(n). lendBike{n/y}
)

τ
−→ (n)

(

b(n) ։ a(n) | lendAirplane{n/x} |

a(n) ։ b(n) | lendBike{n/y}
)

In the first two steps we fire the prefixestell b(x) ։ a(x)
and tell a(y) ։ b(y) throughTELL, PARTAU, DEL. The third
step is the crucial one. The prefixfusex a(x) is fired through
FUSE. ThroughCONSTR, PARFUSE, we discover the active con-
straint ca = b(x) ։ a(x). We then useOPEN to obtain the
action(x){ca} ⊢F

x a(x) for Alice. For Bob, we useCONSTR

to discovercb = a(y) ։ b(y), which we merge with the
empty set of constraints obtained throughIDLESUM; we then
useOPEN to get(y){cb}. At the top level, we then applyPAR-

FUSE to deduce(x y){ca, cb} ⊢F
x a(x). Finally, CLOSEFUSE

fusesx and y to the fresh namen. Let σ = {n/x, n/y} be

such fusion. It is easy to check thatσ is a local minimal
fusion, so{ca, cb} ⊢σ a(x). The instantiation transforms
fusey b(y) into ask b(n), fired in the last step.

Example 5 (Unfair handshaking) To get further insights
on the role played by contractual implication, consider an
alternative handshaking, which makes NO use of։.

Alice ′ = (x)
(

tell a(x). fusex b(x). lendAirplane
)

Bob′ = (y)
(

tell b(y). fusey a(y). lendBike
)

Since the handshaking is still performed,P ′ = Alice ′|Bob′

behaves asP = Alice|Bob in Ex. 4. Yet,P andP ′ behave
quite differently in the presence of a third kid. Let:

Carl = (z)
(

tell c(z). fusez a(z). lendCar
)

The systemP ′ | Carl could lead to the execution of
lendCar, since Carl can receive (throughfuse) the promise
a(x) fromAlice′. However,Alice′ will be stuck waiting for
a bike, so she will never respect her promise, and Carl will
never obtain the expected airplane. In the systemP | Carl,
instead, Carl will not lend his car in vain. Hisfuse will
be stuck, because the contract of Alice now requires a bike,
and Carl does not provide it.

Example 6 (Principals) Consider an online market, where
buyers and sellers trade items. The contract of a buyernB

is to pay for an item, provided that some (still unknown)
sellerxS promises to send it; dually, the contract of a seller
nS is to send an item, provided that some buyeryB pays.

cB = nB says
(

(xS says send(x)) ։ pay(x)
)

cS = nS says
(

(yB says pay(y)) ։ send(y)
)

A buyer first issues her contractcB , then waits until dis-
covering she has to pay, and eventually proceeds with the
processB′. At this point, the buyer may either refuse to
pay (processNoPay), or actually pay the item, by issuing
a paid(x). After the item has been paid, the buyer may wait
for the item to be sent or open a dispute with the seller.

B = (x)(xS)(nB)
(

tell cB . fusex (nB says pay(x)).B ′
)

B ′ = τ.NoPay + τ. tell (nB says paid(x)).B ′′

B ′′ = ask (xS says sent(x)) + τ. tell (nB says dispute(x))

The behaviour of the sellernS is dual.

S = (y)(yB)(nS)
(

tell cS . fusey (nS says send(y)).S ′
)

S ′ = τ.NoSend + τ. tell (nS says sent(y)).S ′

S ′′ = ask (yB says pay(y)) + τ. tell (nS says dispute(y))

An handshaking is reached throughCLOSEFUSE. The fusion
is σ = {m/x, m/y, nS/xS, nB/yB}, wherem is a fresh name.

To automatically resolve disputes, a judgeJ can enter a
session initiated between a buyer and a seller, provided that

8

a dispute has been opened, and either the obligationspay

or send have been inferred. This is done through theask~x

primitive, where~x = {z, xS , yB}. This binds the variable
z to the session identifierm, xS to the actual name of the
seller (nS), andyB to the actual name of the buyer (nB).

J = (~x)
(

ask~x (yB says pay(z) ∧ xS says dispute(z)).

check¬(yB says paid(z)). jail(yB)

| ask~x (xS says send(z) ∧ yB says dispute(z)).

check¬(xS says sent(z)). jail(xS)
)

If the obligation pay(z) is found, but the item has not
been actually paid then the buyer is convicted (modelled
by jail(yB), not further detailed). Similarly, if the obli-
gationsend(z) has not been supported by a corresponding
sent(z), then the seller is convicted.

Encodings. We have studied the expressive power of our
contract calculus by encoding several concurrency idioms,
among which semaphores, Linda [23], theπ-calculus and
graph rewriting. See [5] for all the details.

4 Related Work

The complexity of real-world scenarios, where several
concepts like principals, contracts, authorizations, duties,
delegation, mandates, regulations,etc. are inextricably in-
termingled, have led to a steady flourishing of new logics
over the years. These take inspiration and extend e.g. clas-
sical [17], modal [16], deontic [34, 22], default [24] and
defeasible logics [25]. We think none of these logics, in-
cluding our PCL, capturesall the facets of contracts. Each
of these logics is designed to represent some particular as-
pect of contracts, e.g. obligations, permissions and prohibi-
tions in deontic logics, violation of contracts in default and
defeasible logics, and agreement in our contract logic. We
argue that, since these aspects are orthogonal, it is possible
to extend PCL with features from some of these logics.

The motivations underlying our logic seem related to
those introduced in [3] to compose assume-guarantee spec-
ifications [2]. The idea is that a system will give some guar-
anteeM1 about its behaviour, provided that the environment
it operates within will behave according to some assumption
M2, andvice versa. This is rendered in [3] as the judgment
(M1 → M2) ∧ (M2 → M1) ⊢ M1 ∧ M2. However, since
→ is the usual intuitionistic implication, this judgment (not
valid in IPC) only holds in particular models, where e.g.
M1,M2 must be interpreted as safety properties. Our ap-
proach is different: we make the above judgement valid
by using։ instead of→. We then develop a decidable
proof theory (exploited to design our calculus of contract-
ing processes) while abstracting from the specific models.
Actually, finding sound and complete models for contracts

seems to be hard, e.g. [31] shows the impossibility of devis-
ing, in some lattice-based models, a sound and complete set
of compositional rules for circular assume-guarantee.

Our research seems also related to foundational research
on authorization logics for distributed systems [1, 21, 30].
A crucial difference is that, while authorizations logics are
focussed on deciding, given a bunch of logical authorization
assertions,if a principal is allowed to perform some action,
in our contract logic we are also concerned with discovering
what that principal has to promise in return.

In our model of contracts we have abstracted from most
of the implementation issues. For instance, in insecure envi-
ronments populated by attackers, the operation of exchang-
ing contracts requires particular care. This is related to the
problem of establishingcommon knowledgein distributed
systems [26]. A trusted third party might then be in order to
make the contract exchange fair. We expect to apply stan-
dard techniques for guaranteeing non-repudation [28, 39],
fair exchange [4], and contract signing [15, 27]. Note that
our logic works at a higher abstraction level than the pro-
tocol level, by focussing on how the exchanged messages
lead to an handshaking between the parties.

Contracts are modelled as processes in [12, 13], to spec-
ify the interaction behaviour of clients and services. A client
contract complies with a service contract if any possible in-
teraction will always succeed. The crux is how to define
(and decide) a subcontract relation, that allows for safely
substituting services without affecting the compliance with
their clients. Our contracts could be seen as a declarative
underspecified description of which behavioural contracts
are an implementation. Behavioural contracts seem more
rigid than ours, as they precisely fix the order in which the
actions must be performed. Even though in some cases
this may be desirable, many real-world contracts allow for a
more liberal way of constraining the involved parties (e.g.,
“I will pay before the deadline”). While the crucial notion
in [12] is compatibility (which results in a yes/no output),
we focus on the inferring theobligationsthat arise from a
set of contracts. This provides a fine-grained quantification
of the reached agreement, e.g. we may identify who is re-
sponsible of a contract violation.

Negotiation and service-level agreement are dealt with
in cc-pi [10], a calculus combining features from concur-
rent constraints and name passing. As in theπ-calculus,
synchronization is channel-based: it only happens between
two processes sharing a name. Synchronization fuses two
names, similarly to the fusion calculus and ours. A main
difference between cc-pi and our calculus is that in cc-pi
only two parties may simultaneously reach an agreement,
while our fuse allows for simultaneous multiparty agree-
ments. Also, in our calculus the parties involved in an agree-
ment do not have to share a pre-agreed name. This is useful
for modelling scenarios where a contract can be accepted

9

by any party meeting the required terms (see e.g. Ex. 6).
Our contracts could be exploited to enhance the compen-

sation mechanism of long-running transactions [7, 8, 11].
There, a long transaction is partitioned into a sequence of
smaller ones, each one associated with acompensation, to
be run upon failures of the standard execution [20]. While
in long-running transactions clients have little or no control
on the compensations (they are specified by the designer),
in our approach clients can use contracts to select those ser-
vices offering the desired compensation. In [9], cc-pi is ex-
tended with rules for handling transactions. This gives to
the client more control on the choice of compensations. The
differences w.r.t. our calculus noted above still apply.

The reputationof the principal issuing a contract could
be influential in deciding whether accepting such contract or
not. Reputation systems which evaluate the past behaviour
of principals, e.g. [29] can then be used to make our con-
tracts more expressive. Time is another feature that may
arise while modelling contracts. Temporal extensions of our
logics, e.g. like [18], will allow to check whether a promise
is violated in a given trace (e.g. the deadline passed).

References

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A
calculus for access control in distributed systems.ACM
TOPLAS, 4(15):706–734, 1993.

[2] M. Abadi and L. Lamport. Composing specifications.ACM
TOPLAS, 15(1):73–132, 1993.

[3] M. Abadi and G. D. Plotkin. A logical view of composition.
Theoretical Computer Science, 114(1):3–30, 1993.

[4] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair ex-
change of digital signatures. InEUROCRYPT, 1998.

[5] M. Bartoletti and R. Zunino. A calculus of contracting pro-
cesses. Technical Report DISI-09-056, Univ. Trento, 2009.

[6] M. Bartoletti and R. Zunino. A logic for contracts. Tech-
nical Report DISI-09-034, Univ. Trento, 2009. (Nov 2009
revision).

[7] L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long
running transactions. InProc. FMOODS, 2003.

[8] R. Bruni, H. C. Melgratti, and U. Montanari. Theoreti-
cal foundations for compensations in flow composition lan-
guages. InProc. POPL, 2005.

[9] M. G. Buscemi and H. C. Melgratti. Transactional service
level agreement. InProc. TGC, 2007.

[10] M. G. Buscemi and U. Montanari. CC-Pi: A constraint-
based language for specifying service level agreements. In
Proc. ESOP, 2007.

[11] M. J. Butler, C. A. R. Hoare, and C. Ferreira. A trace se-
mantics for long-running transactions. In25 Years Commu-
nicating Sequential Processes, 2004.

[12] G. Castagna, N. Gesbert, and L. Padovani. A theory of con-
tracts for web services.ACM TOPLAS, 31(5), 2009.

[13] G. Castagna and L. Padovani. Contracts for mobile pro-
cesses. InProc. CONCUR, 2009.

[14] M. Coppo and M. Dezani-Ciancaglini. Structured commu-
nications with concurrent constraints. InProc. TGC, 2008.

[15] V. Cortier, R. K̈usters, and B. Warinschi. A cryptographic
model for branching time security properties – the case of
contract signing protocols. InProc. ESORICS, 2007.

[16] A. Daskalopulu and T. Maibaum. Towards electronic con-
tract performance. InProc. DEXA, 2001.

[17] H. Davulcu, M. Kifer, and I. Ramakrishnan. CTR-S: A logic
for specifying contracts in semantic web services. InProc.
WWW, 2004.

[18] H. DeYoung, D. Garg, and F. Pfenning. An authorization
logic with explicit time. InProc. CSF, 2008.

[19] M. Fairtlough and M. Mendler. Propositional lax logic.In-
formation and Computation, 137(1):1–33, 1997.

[20] H. Garcia-Molina and K. Salem. Sagas. InSIGMOD Con-
ference, 1987.

[21] D. Garg and M. Abadi. A modal deconstruction of access
control logics. InProc. FoSSaCS, 2008.

[22] J. Gelati, A. Rotolo, G. Sartor, and G. Governatori. Nor-
mative autonomy and normative co-ordination: Declarative
power, representation, and mandate.Artificial Intelligence
and Law, 12(1-2):53–81, 2004.

[23] D. Gelernter. Generative communication in Linda.ACM
TOPLAS, 7(1), 1985.

[24] G. K. Giannikis and A. Daskalopulu. The representation of
e-contracts as default theories. InNew Trends in Applied
Artificial Intelligence, 2007.

[25] G. Governatori. Representing business contracts in RuleML.
Int. J. of Cooperative Information Systems, 14(2-3), 2005.

[26] J. Y. Halpern and Y. Moses. Knowledge and common knowl-
edge in a distributed environment.J. ACM, 37(3), 1990.

[27] D. Kähler and R. K̈usters. Constraint solving for contract-
signing protocols. InProc. CONCUR, 2005.

[28] S. Kremer, O. Markowitch, and J. Zhou. An intensive sur-
vey of fair non-repudiation protocols.Computer Communi-
cations, 25, 2002.

[29] K. Krukow, M. Nielsen, and V. Sassone. A logical frame-
work for history-based access control and reputation sys-
tems.Journal of Computer Security, 16(1):63–101, 2008.

[30] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic:
A logic-based approach to distributed authorization.ACM
TISSEC, 6(1):128–171, 2003.

[31] P. Maier. Compositional circular assume-guarantee rules
cannot be sound and complete. InProc. FoSSaCS, 2003.

[32] J. Parrow and B. Victor. The fusion calculus: Expressiveness
and symmetry in mobile processes. InProc. LICS, 1998.

[33] F. Pfenning. Structural cut elimination - intuitionistic and
classical logic.Information and Computation, 157, 2000.

[34] C. Prisacariu and G. Schneider. A formal language for elec-
tronic contracts. InProc. FMOODS, 2007.

[35] V. Saraswat, P. Panangaden, and M. Rinard. Semantic foun-
dations of concurrent constraint programming. InProc.
POPL, 1991.

[36] R. Statman. Intuitionistic propositional logic is polynomial-
space complete.Theoretical Computer Science, 9, 1979.

[37] The PCL web site.http://www.disi.unitn.it/∼zunino/PCL.
[38] M. Wirsing et al. SENSORIA process calculi for service-

oriented computing. InProc. TGC, 2006.
[39] J. Zhou. Non-repudiation in Electronic Commerce. Artech

House, 2001.

10

A Selected Cases for Cut elimination

CaseZERO / PREPOST

D0

Γ ⊢ q

Γ ⊢ p ։ q
ZERO

D1

Γ, p ։ q, a ⊢ p

D2

Γ, p ։ q, q ⊢ b

Γ, p ։ q ⊢ a ։ b
PREPOST

Γ ⊢ a ։ b
CUT =⇒

D0

Γ ⊢ q

Γ, q ⊢ q
ID

Γ, q ⊢ p ։ q
ZERO

D2

Γ, q, p ։ q ⊢ b

Γ, q ⊢ b
CUT

Γ ⊢ b
CUT

Γ ⊢ a ։ b
ZERO

CaseZERO / FIX

D0

Γ ⊢ q

Γ ⊢ p ։ q
ZERO

D1

Γ, p ։ q, a ⊢ p

D2

Γ, p ։ q, q ⊢ a

Γ, p ։ q ⊢ a
FIX

Γ ⊢ a
CUT =⇒

D0

Γ ⊢ q

Γ, q ⊢ q
ID

Γ, q ⊢ p ։ q
ZERO

D2

Γ, q, p ։ q ⊢ a

Γ, q ⊢ a
CUT

Γ ⊢ a
CUT

CasePREPOST / FIX , assuming(p ։ q) ∈ Γ

D0

Γ, a ⊢ p

D1

Γ, q ⊢ b

Γ ⊢ a ։ b
PREPOST

D2

Γ, a ։ b, r ⊢ a

D3

Γ, a ։ b, b ⊢ r

Γ, a ։ b ⊢ r
FIX

Γ(p ։ q) ⊢ r
CUT =⇒

D̂0

Γ, r ⊢ p

D̂1

Γ, q ⊢ r

Γ ⊢ r
FIX

whereD̂0 =

D0+

Γ, r, a ⊢ p

D1+

Γ, r, q ⊢ b

Γ, r ⊢ a ։ b
PREPOST

D2

Γ, r, a ։ b ⊢ a

Γ, r ⊢ a
CUT

D0+

Γ, r, a ⊢ p

Γ, r ⊢ p
CUT

and D̂1 =

D1

Γ, q ⊢ b

D0+

Γ, q, b, a ⊢ p

D1+

Γ, q, b, q ⊢ b

Γ, q, b ⊢ a ։ b
PREPOST

D3+

Γ, q, b, a ։ b ⊢ r

Γ, q, b ⊢ r
CUT

Γ, q ⊢ r
CUT

CaseFIX / any rule, assuming(p ։ q) ∈ Γ

D0

Γ, a ⊢ p

D1

Γ, q ⊢ a

Γ ⊢ a
FIX

D2

Γ, a ⊢ b
∗

Γ(p ։ q) ⊢ b
CUT =⇒

Γ, b, p ⊢ p
ID

D1+

Γ, b, q ⊢ a

D0+

Γ, b, q, a ⊢ p

Γ, b, q ⊢ p
CUT

Γ, b ⊢ p
FIX

D1

Γ, q ⊢ a

D2+

Γ, q, a ⊢ b

Γ, q ⊢ b
CUT

Γ ⊢ b
FIX

Our cut metric is the following. We associate to each cut the weight(p, h(D0), h(D1)) wherep is the cut formula, andh(Di)
denotes the height of the subderivationDi. The stuctural ordering of formulae and the usual one on naturals induce the
lexicographical ordering of weights. This is a well-founded ordering, and each reduction above replaces a cut withlighter
ones, only.

11

